基本原理:光学活性物质对组成平面偏振光的左旋和右旋圆偏振光的吸收系数是不相等的,εL≠εR,这会使左、右圆偏振光透过后变成椭圆偏振光,这种现象称为圆二色性(Circular dichroism,缩写为CD)。根据圆二色光谱法的原理和测试要求设计制成的仪器称为圆二色光谱仪,该仪器广泛应用于蛋白质折叠、蛋白质构象、酶动力学、配位化合物、手性化合物等的科学研究。利用圆二色光谱仪进行分析时,所得结果常以圆二色光谱显示。圆二色光谱中的横坐标是平面偏振光的波长λ,纵坐标为吸收系数之差(Δε=εL-εR)。由于εL≠εR,透射光不再是平面偏振光,而是椭圆偏振光,摩尔椭圆度[θ]与Δε的关系为:[θ]=3300Δε,因此圆二色光谱也可以摩尔椭圆度为纵坐标,以波长为横坐标作图。
主要应用:由于生物大分子基本都含有手性的基团和结构,而圆二色光谱仪可以帮助测量和观察生物大分子的结构和构象变化,因此圆二色光谱技术成为生物物理和生物化学研究中的一个非常重要的手段,被广泛应用于有机化学,生物化学,配位化学和药物化学等领域,其主要应用如下:
a)手性结构测定:如官能团的位置及特定原子在手性分子中位置的测定;
b)构型的测定:利用对应关系和邻近关系测定密切相关的一类化合物的相对构型;利用八区律等一类经验和半经验的规律,结合其它方法测定绝对构型;
c)手性介质诱导的光学活性研究:即一个非手性分子被外部介质所诱导而产生光学活性;
d)溶剂效应:研究溶剂与溶质间的相互作用及该作用对分子的光学活性的影响;
e)圆二色光谱仪还可以用作光谱分析;
项目特点:圆二色光谱是应用最为广泛的测定蛋白质二级结构的方法,是研究稀溶液中蛋白质构象的一种快速、简单、较准确的方法。它可以在溶液状态下测定,较接近其生理状态。而且测定方法快速简便,对构象变化灵敏,所以它是目前研究蛋白质二级结构的主要手段之一,并已广泛的应用于蛋白质的构象研究中。